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Abstract

In this paper, an alternative greed algorithm for interpo-
lation/regularization of irregularly-sampled seismic data in
the Fourier domain is described in connection with the ap-
proximate irregular discrete Fourier transform (AIDFT). The
greed algorithm is used to fill in empty bins, generated by
defective sampling, under statistical and/or physical con-
straints, so as to achieve an acceptable Fourier spetrum.
Much like in other implementations, a least square norm
Fourier spectrum is the input for the process. Here, this
least square initial solution is provided by the AIDFT. The
greed algorithm proposed is an iterative procedure that
consists in, step by step, correcting for survey’s footprints
of main Fourier components.

Introduction

Irregular seismic surveys may imply many shortcomings in
processing, imaging, and inversion of seismic data. Thus
many authors have tackled the problem of regularizing de-
fective data via interpolation. Among many different ap-
proaches, Fourier interpolation has had widespreaded use
due to the wave nature of seismic data (Sacchi, et al. 1998;
Duijndam et al, 1999). It generally consists in fitting irreg-
ular data with a predefined set of Fourier components Fm,
plane waves at sampling points, and using this set to pre-
dict the data in a regular survey. A least square error func-
tion

E = ∑
n

∥∥∥∥dn−∑
m

DmFnm

∥∥∥∥2
(1)

is minimized with an optimum choice of the vector DDD, the
weights each plane wave Fm has in the decomposition of
the data d. Minimizing (1) is equivalent to solve,

F HF DDD = F Hd , (2)

where F stands for a matrix that has the plane waves Fm
as its columns. In general, this formulation does not yield a
well posed problem for finding DDD. F HF is not an orthonor-
mal matrix and it has no inverse particularly when there are
missing samples. Thus, an alternative way to fill in empty
bins are required.

In an iterative reweighted least square approach a set of
relatively small parameters are inserted and adjusted to

pursue an extra constraint, either physical or statistical, in
the form, [

F HF + ΛΛΛ
(k)
]

DDD(k+1) = F Hd , (3)

where DDD(k+1) is the solution at iteration (k+ 1), ΛΛΛ
(k) is a di-

agonal matrix with entries λi(DDD(k)) borrowed from iteration
(k). The process starts with the L2 solution of equation(2)
and, after a few iterations, an acceptable solution is finally
achieved as,

DDD = [F HF + ΛΛΛ]−1 F Hd . (4)

The solution in the equation above is generally obtained in
an approximated way, often via conjugated gradient, due
to the large dimensions involved. The problem has gener-
ally complexity higher than O(n2)1, n is the number of non
zero entries, and tends to reach a deadlock for larger prob-
lems. On the other hand, diminishing dimensions to keep
feasibility of the solution often limits its representativeness.

A different class of approach, the so called greed algo-
rithms, involves searching in the L2 solution of (4) for the
“best fit” component, let us say Fbest , then subtracting from
d its projection onto the corresponding subspace, this de-
fines Dbest . The result is then projected onto another cho-
sen component F̄sec after an orthogonalization. The idea is
to represent the data with a minimum number of Fourier
components, avoiding leaking and saving computer re-
sources. This procedure tends to push too far the assump-
tions made about the solution and, for a more rigorous so-
lution, may otherwise require large memory and CPU re-
sources. Also, the process is somewhat vague about what
to do when more than one sample per bin is available.

The discrete Fourier spectrum of an irregularly sam-
pled multidimensional set of data can be estimated with
a N log N complexity algorithm in an approximated way
(Oliveira, 2017, 2018). The approximation is achieved with
a series expected to converge and exist only when sam-
pling is not defective, no data losses.

The purpose of this paper is to discuss an alternative greed
algorithm that could help moving from a spectrum obtained
with the AIDFT, under the hypothesis of null samples where
sampling is defective, to a solution similar to the one it
would be obtained solving equation (4).

The L2 solution and the approximated discrete irregu-
lar Fourier transform

The AIDFT expresses [F HF + ΛΛΛ]−1 F H in a series that
converges generally as fast as the Fourier kernel’s (eiθ )
Taylor series does for small θ . The idea is to choose

1The number of null samples here is negligible.
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an embedded grid where all samples’ positions are close
enough to some grid point so that the deviations are kept
small. Given a set of samples, the choice of the embed-
ded grid not only determines the expected Fourier spectra
range but also defines over or under sampled problems.
Over sampled problems, that where grid points may have
many close samples, yields a typical overdetermined prob-
lem, while under sampled problems have grid points with-
out neighbors. The AIDFT exists only for over/even sam-
pled problems. Under sampled problems are treated as if
a null sample was associated to any empty bin, a grid point
with no neighbors. At this point, for simplicity, let us de-
fine Fa = [F HF +ΛΛΛ]−1 F H and Fs = F , with subscripts a
and s, respectively, standing for analysis and synthesis, as
in frame theory. An extension of Parseval’s theorem that
holds for frames allows one to conclude that ‖D‖2

∝ ‖d‖2

which means that if D is obtained as in (4) it is also a L2
norm solution to the problem2 if d has its empty bins filled
with zeros.

Defective sampling operators

Defective data d may be represented by d = dh, with h
a “broken comb” operator. In the Fourier domain this is
written as D = D ∗H, where H is a burring operator (see
figure (1). The blurring operator is expected to distort the
Fourier spectrum but not to prevent anomalous amplitudes
recognition.

Figure 1: Defective sampling operator, in the space domain
(above), and in wave-number domain(below). About 40% missing
data positions randomly set in this case.

A greed like algorithm to fill in empty bins

Unlike other greed approaches to interpolate missing data,
here each initial Fourier component is altered without the
orthogonalization requirement. The main goal here is to
fill in missing data bins, reverting the effects of a defec-
tive/irregular sampling operator h under the assumption
that its Fourier spectrum H is sufficiently sparse to allow
the recognition of signal’s main components even after the
associated blurring effect.

The blurring effect results from the convolution of H with
the data’s Fourier spectrum. Given that H typically has its
biggest amplitude at the wave-number k = 0, that is H(0),
and all neighboring samples are considerably smaller3, one
can still select the anomalous components in the data’s
spectrum D. After blurring, any component of D is the sum
of its original values times H(0) and smaller contributions
from neighboring components. Defining H1 as the result of
H−H(0)δδδ (k) one can write,

D = DH(0) + H1 ∗D . (5)

2When there are grid points with many samples, one can say
that D is L2 only if ΛΛΛ = λ I, λ a constant.

3Loosely stating that the signal is well represented by the avail-
able data.

Further splitting D = Dmain +Drest so that anomalous compo-
nents are called main, after blurring the main components
will be given by,

Dmain = DmainH(0)+H1 ∗Dmain +DrestH(0)+ ... (6)

Given that H1 and Drest are, by definition, smaller, ideally
one has,

Dmain = DmainH(0)+ smaller terms , (7)

Then, under certain conditions, it is possible to devise an
iterative procedure that approximately reverts the blurring
effect.

The procedure is made up of a few steps:

1. Select the biggest samples in the current spectrum
until a given percentage of the total energy is reached
and zero out the remaining components;

2. Apply the blurring operator to the spectrum obtained
in step (1) and estimate how much the selected am-
plitudes decrease;

3. Divide the spectrum from step (1) by its rate of de-
crease so as to recover their expected actual ampli-
tudes;

4. Apply the blurring operator to the result of step (3) and
subtract from the current spectrum;

5. Go back to step (1) if it was not achieved a negligible
level of residual energy.

The algorithm above is to be applied in the Fourier domain.
The blurring operator application at the Fourier spectrum
of an irregularly sampled data (step (2)) turns out to be a
sequence of operations as FahFsD. In other words, the
operator is applied in the space domain and transformed
back to the Fourier domain. Notice that, should the data
sampling be regular with empty bins, F → FFT and the
proposed algorithm goes as much like described above.

It might be necessary to adapt the greed algorithm pro-
posed if the data’s “degree of sparseness” is not high.
Other hypothesis, if available, must be considered to reach
a reasonable outcome. A good example would be a limi-
tation on the expected bandwidth. A bandpass filter could
easily be applied at step (1) to the selection of components
to work with. Figure 2 have a few illustrating pictures where
4 events characterized by 4 dominant wave-numbers k =
(12,5,3,20), amplitudes A = (1,1,0.5,1.5), and phases φ =
(.1, .3, .5,−.2)π are found at positions x0 = (1,5,7,8), their
wavelets are represented by Θ(x− x0)Ae−αx sin(2πkx+ φ),
with α = −.005, Θ(x) the Heaviside function, and space
interval set to 1. From figure 2, it can be seen that the
procedure relatively succeeded in predicting a reasonable
function, although not reproducing smaller details of the ex-
pected spectrum. Also, it can be seen (fifth picture from top
to bottom) that the original data was not fully honored. The
role of the wavelet used is to reduce the suitability of the
data to the sparseness hypothesis, otherwise the predic-
tion would be perfect, the example a little unfair.

The proposed procedure is heavily based on the as-
sumption that sampling problems occur in a rather non-
systematic way. Should sampling failures occur systemati-
cally, the corresponding Fourier operator H would not look
like that in figure 1. The simple case where every other
sample is lacking in an evenly spaced survey, H would have
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Figure 2: From top to bottom, odd pictures in the space do-
main, even pictures in the wave-number domain; First and sec-
ond pictures, the full data in black, the irregular/defective data in
blue; Third and fourth pictures, the full data in black, the recov-
ered/interpolated data in blue; Fifth picture, the regular/defective
data in black, the recovered/interpolated data at sampling posi-
tions in red; Sixth picture, the spectrum of the full data in black, the
residual spectrum in blue.

just two main peaks at k = 0 and k = 0.25∆x (∆x the space
interval), making it difficult to identify higher wave-number
anomalous components (aliasing), see, for instance, Hen-
nenfent et al (2007). In order to apply the proposed greed
algorithm in these cases, another a priori information must
be added. Many authors have covered these cases with
different approaches like prediction in f − x domain, sem-
blance related priors to guide inversion, and many oth-
ers. Here, we make use of the well known relationship be-
tween plane waves in the space domain and origin crossing
straight lines in the f − k domain to define a signal indi-
cating function S ( f ,k) that replaces actual amplitudes D.
The proposed procedure changes only in that now is the
anomalous S ( f ,k) locations that points to where to get
Dmain.

Sinthetic seismic data example

In geophysical problems, very often the solution is ex-
pected to be sparse in the wave-number domain, that is,
it is assumed that a limited subset of D is sufficient to de-
scribe d. Hyperbolic events are expected to spread around
the wave-number domain, making sparseness a weaker
hypothesis. However, locally, small curvatures (higher ve-
locities) are approximately seen as a set of tangent lines.

Defective sampling often occur in a systematic way. Thus,
correcting for defective surveys ideally should take into ac-
count different means to handle inherent limitations on sig-
nal recognition.

A synthetic 2D seismic data set over plane reflectors is
used to test the algorithm proposed. The model contains
3 plane reflectors, dips are 0◦, 20◦, and 10◦, velocities
1500m/s, 2500m/s, and 3500m/s. Shots are irregularly po-
sitioned around a regular 40 meter spaced grid and traces
are irregularly placed so as to keep an average trace dis-
tance of 20 meters. The purpose is to regularize shots and
trace positions, and also to reduce the average shot spac-
ing to 20 meters. This test covers randomly and system-
atically acquired data to interpolate. Temporal frequencies
are controlled by a Ricker wavelet with 25Hz peak.

To formulate the problem of interpolating shots and traces
at once, subsets of 24 “contiguous” shots were treated. Co-
ordinates were all converted to the regular intended grid
with trace positions converted into offsets with respect to
corresponded shot positions. Figure 3 shows two input
shots before (top) and after (bottom) regularization. An in-
terpolated shot, also at regular positions is shown.

Conclusions

An alternative greed approach to regularize and interpolate
relatively sparse seismic data was shown. The approach
is applied in conjunction with an approximate estimate of
the Fourier spectrum for irregularly sampled multidimen-
sional functions to populate defective acquisition bins ini-
tially taken as if a null sample had been recorded. The
proposed process was not tested against random noise.
However, it is expected that moderate noise can helplessly
prevent weak signal recovery.

The algorithm can and should be combined with other pri-
ors to enhance the ability to predict candidate samples for
signal recovery.
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Figure 3: Top, irregularly sampled and with missing shots. Bottom, the sequence of regularized and interpolated shots. The event of greater
hyperbolic moveout corresponds to a plane reflector. The other two events comes from dipping reflectors. The trace interval is ideally 20 meters
between traces and shot points. The original shot spacing is irregularly varying around 40 meters.

Sixteenth International Congress of The Brazilian Geophysical Society


